本文提议使用修改的完全连接层转移初始化,以进行1900诊断。卷积神经网络(CNN)在图像分类中取得了显着的结果。但是,由于图像识别应用程序的复杂性,培训高性能模型是一个非常复杂且耗时的过程。另一方面,转移学习是一种相对较新的学习方法,已在许多领域使用,以减少计算来实现良好的性能。在这项研究中,Pytorch预训练的模型(VGG19 \ _bn和WideresNet -101)首次在MNIST数据集中应用于初始化,并具有修改的完全连接的层。先前在Imagenet中对使用的Pytorch预培训模型进行了培训。提出的模型在Kaggle笔记本电脑中得到了开发和验证,并且在网络培训过程中没有花费巨大的计算时间,达到了99.77%的出色精度。我们还将相同的方法应用于SIIM-FISABIO-RSNA COVID-19检测数据集,并达到80.01%的精度。相比之下,以前的方法在训练过程中需要大量的压缩时间才能达到高性能模型。代码可在以下链接上找到:github.com/dipuk0506/spinalnet
translated by 谷歌翻译
Machine learning is the dominant approach to artificial intelligence, through which computers learn from data and experience. In the framework of supervised learning, for a computer to learn from data accurately and efficiently, some auxiliary information about the data distribution and target function should be provided to it through the learning model. This notion of auxiliary information relates to the concept of regularization in statistical learning theory. A common feature among real-world datasets is that data domains are multiscale and target functions are well-behaved and smooth. In this paper, we propose a learning model that exploits this multiscale data structure and discuss its statistical and computational benefits. The hierarchical learning model is inspired by the logical and progressive easy-to-hard learning mechanism of human beings and has interpretable levels. The model apportions computational resources according to the complexity of data instances and target functions. This property can have multiple benefits, including higher inference speed and computational savings in training a model for many users or when training is interrupted. We provide a statistical analysis of the learning mechanism using multiscale entropies and show that it can yield significantly stronger guarantees than uniform convergence bounds.
translated by 谷歌翻译
Time series is the most prevalent form of input data for educational prediction tasks. The vast majority of research using time series data focuses on hand-crafted features, designed by experts for predictive performance and interpretability. However, extracting these features is labor-intensive for humans and computers. In this paper, we propose an approach that utilizes irregular multivariate time series modeling with graph neural networks to achieve comparable or better accuracy with raw time series clickstreams in comparison to hand-crafted features. Furthermore, we extend concept activation vectors for interpretability in raw time series models. We analyze these advances in the education domain, addressing the task of early student performance prediction for downstream targeted interventions and instructional support. Our experimental analysis on 23 MOOCs with millions of combined interactions over six behavioral dimensions show that models designed with our approach can (i) beat state-of-the-art educational time series baselines with no feature extraction and (ii) provide interpretable insights for personalized interventions. Source code: https://github.com/epfl-ml4ed/ripple/.
translated by 谷歌翻译
我们考虑涉及一组代理的在线估计问题。每个代理都可以访问(个人)流程,该过程从实数分布中生成样本,并试图估算其平均值。我们研究了某些分布具有相同均值的情况,并且允许代理人积极查询其他代理商的信息。目的是设计一种算法,该算法使每个代理都能够通过与其他代理商进行沟通来改善其平均估计。平均值的均值和分布数量尚不清楚,这使得任务是非平凡的。我们介绍了一种新颖的协作策略,以解决这个在线个性化的平均估计问题。我们分析其时间复杂性,并引入在数值实验中享有良好性能的变体。我们还将我们的方法扩展到了具有相似手段的代理商群体寻求估算其群集的平均值的环境。
translated by 谷歌翻译
我们采用了近端迭代,以便在加固学习中进行价值函数优化。近端迭代是一种计算上有效的技术,使我们能够向更理想的解决方案偏置优化过程。作为近端迭代在深增强学习中的具体应用,我们将深度Q-Network(DQN)代理具有近期术语的目标函数,以确保DQN的在线网络组件仍保留在目标网络附近。我们用近端迭代调用DQN或DQNPRO的所得代理,在ATARI基准测试中对原始DQN的显着改进。我们的结果强调了采用深度增强学习的声音优化技术的力量。
translated by 谷歌翻译
我们考虑优化无人机中心的分布操作的问题,该驱动器调度无人机对不同地理位置产生随机需求的医疗用品的随机需求。无人机交付是一种创新方法,引入了许多益处,例如低接触的递送,从而降低了大流行和可染色疫苗的传播。虽然我们专注于这项工作的医疗供应,但无人机交付适用于许多其他物品,包括食品,邮政包和电子商务。在本文中,我们的目标是解决与不同地理位置随机需求相关的无人机交付挑战。我们认为与需要不同飞行范围的地理位置的不同课程,其与在无人机电池中保持的电荷量直接相关。我们根据从无人机中心的距离对随机需求进行分类,使用Markov决策过程来模拟问题,并使用代表突出的无人机交付公司的现实数据进行计算测试。我们使用强化学习方法解决问题,并与使用动态编程的确切解决方案相比,其高性能。最后,我们分析结果并提供管理无人机集线器操作的见解。
translated by 谷歌翻译
依赖于太多的实验来学习良好的行动,目前的强化学习(RL)算法在现实世界的环境中具有有限的适用性,这可能太昂贵,无法探索探索。我们提出了一种批量RL算法,其中仅使用固定的脱机数据集来学习有效策略,而不是与环境的在线交互。批量RL中的有限数据产生了在培训数据中不充分表示的状态/行动的价值估计中的固有不确定性。当我们的候选政策从生成数据的候选政策发散时,这导致特别严重的外推。我们建议通过两个直接的惩罚来减轻这个问题:减少这种分歧的政策限制和减少过于乐观估计的价值约束。在全面的32个连续动作批量RL基准测试中,我们的方法对最先进的方法进行了比较,无论如何收集离线数据如何。
translated by 谷歌翻译
Pennylane是用于量子计算机可区分编程的Python 3软件框架。该库为近期量子计算设备提供了统一的体系结构,支持量子和连续变化的范例。 Pennylane的核心特征是能够以与经典技术(例如反向传播)兼容的方式来计算变异量子电路的梯度。因此,Pennylane扩展了在优化和机器学习中常见的自动分化算法,以包括量子和混合计算。插件系统使该框架与任何基于门的量子模拟器或硬件兼容。我们为硬件提供商提供插件,包括Xanadu Cloud,Amazon Braket和IBM Quantum,允许Pennylane优化在公开访问的量子设备上运行。在古典方面,Pennylane与加速的机器学习库(例如Tensorflow,Pytorch,Jax和Autograd)接口。 Pennylane可用于优化变分的量子本素体,量子近似优化,量子机学习模型和许多其他应用。
translated by 谷歌翻译